

Table of Contents

18ELN14 : Basic Electronics	1
A COURSE INFORMATION	1
1. Course Overview	1
2. Course Content	2
3. Course Material	2
4. Course Prerequisites	
B. OBE PARAMETERS	
1. Course Outcomes	
2. Course Applications	4
3. Articulation Matrix	5
4. Mapping Justification	5
5. Curricular Gap and Content	6
6. Content Beyond Syllabus	6
C. COURSE ASSESSMEN I	6
1. Course Coverage	6
2. Continuous Internal Assessment (CIA)	7
D1. I EACHING PLAN - 1	7
Module - 1	7
	8
E1. CIA EXAM – 1.	
a. Model Question Paper - 1	
D. Assignment -1	
D2. TEACHING PLAN - 2	
	12
	3⊥
2 Model Question Dapar 2	
a. Model Question Paper - 2 b. Assignment - 2	14 1 <i>Г</i>
D. Assignment – 2	15 17
D3. TEACHING FEAN - 3	1/ 17
For CIA EXAM $_{2}$	1/ 18
a Model Ouestion Paner - 2	<u>1</u> 2
h Assignment – 2	10 12
1 University Model Question Paper	20
2 SEE Important Questions	20
	······································

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

18ELN14 : Basic Electronics

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EC
Year / Semester :	2019/1	Academic Year:	2019-20
Course Title:	BASIC ELECTRONICS	Course Code:	18ELN14
Credit / L-T-P:	40-14-0	SEE Duration:	180 Minutes
Total Contact Hours:	54	SEE Marks:	100 Marks
CIA Marks:	30 Marks	Assignment	1/ Module
Course Plan Author:	TEJASWINI.M/ N.S.MYTHREYE/ M NAGARA JA	Sign	
Reviewed By:		Sign	

2. Course Content

Mod	Module Content	Teaching	Module	Blooms
ule		Hours	Concepts	Level
1	Semiconductor Diodes and Applications: P-N junction diode, Equivalent circuit of diode, Zener diode and zener diode as a regulator. Rectification-Half wave rectifier, full wave rectifier, bridge rectifier, capacitor filter circuit, Photo diode, LED, Photo coupler, 78XX series and 7805 fixed IC voltage regulator	11	Regulator Rectifiers	L2,L3
2	FET and SCR: Introduction to JFET, construction and operation, JFET drain characteristics and parameters, JFET transfer characteristics, Square law expression ID, Input resistance, MOSFET: Depletion and enhancement type construction, operation, characteristics and symbols. CMOS, Silicon Controlled Rectifier- two transistor model, Switching action characteristics and phase control application	14	FET and SCR characteristics	L3.L3
3	Operational Amplifiers and Applications: Introduction to op- amp, Op-amp input modes, Op-amp parameters-CMRR, Input offset voltage and current, Input bias current, Input and output impedance, Slew rate. Applications of op-amp- Inverting amplifier, Non-inverting amplifier, Summer, voltage follower, integrator, differentiator, comparator	9	Op-amp Characteristics and virtual ground	L3,L3
4	BJT applications. Feedback amplifiers and oscillators: BJT as an amplifier, as a switch, Transistor switch circuit to switch ON/OFF an LED and a lamp in a power circuit using relay. Feedback amplifiers-Principle, properties and advantages of negative feedback, Types of feedback, Voltage series feedback and gain stability with feedback, Oscillators- Barkhaunsen's criteria for oscillation, RC phase shift oscillator, Wein bridge oscillator, IC 555 timer and astable oscillator using IC 555	12	BJT characteristics and Oscillators	L3,L3
5	Digital Electronics Fundamentals: Difference between analog and digital signals, Number systems: Binary and hexadecimal, Conversion: Decimal to binary and hexadecimal to decimal and vice-versa, Boolean algebra, Basic and universal gates, Half and full adder, Multiplexer, decoder, SR and JK flip flops, Shift register, 3 bit Ripple counter. Basic communication system, Principle of operations of Mobile phone	8	Counters and Mobile Communicatio n	L3,L2

ST HISTITUTE OF IG	
	D
BANGALORE *	

SKIT	Teaching Process	lons Rev No.: 1.0
oc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
Title:	Course Plan	Page: 3 / 22

Copyright ©2017. cAAS. All rights reserved. 3. Course Material

J. OO		
Mod	Details	Available
ule		
1	Text books	
1	D P Kothari, I J Nagarath, "Basic Electronics", 2 nd edn, Mc Graw Hill, 2018	Not Available
2	D P Kothari, I J Nagarath, "Basic Electronics", 2 nd edn, Mc Graw Hill, 2018	Not Available
2	Thomas.L.Floyd, "Electronic Devices", Pearson education, 9 th edition, 2012	In Lib
3	D P Kothari, I J Nagarath, "Basic Electronics", 2 nd edn, Mc Graw Hill, 2018	Not Available
3	Thomas.L.Floyd, "Electronic Devices", Pearson education, 9 th edition, 2012	In Lib
4	D P Kothari, I J Nagarath, "Basic Electronics", 2 nd edn, Mc Graw Hill, 2018	Not Available
4	Thomas.L.Floyd, "Electronic Devices", Pearson education, 9 th edition, 2012	In Lib
5	D P Kothari, I J Nagarath, "Basic Electronics", 2 nd edn, Mc Graw Hill, 2018	Not Available
2	Reference books	
1	D P Kothari, I J Nagarath, "Basic Electronics", 1 st edn, Mc Graw Hill, 2014	In Lib
2	Boylestad, Nashelskey,"Electronic Devices and Circuit theory", Pearson Education, 9 th edition, 2007/11 th edition, 2013	In Lib
3	David A Bell, "Electronic Devices And Circuits", Oxford University Press, 5 th Edition, 2008	In Lib
4	Muhammad H Rashid, "Electronics Devices and Circuits", Cengage Learning, 2014.	In Lib
3	Others (Web, Video, Simulation, Notes etc.)	
		Not Available

4. Course Prerequisites

SNo	Course Code	Course Name	Module / Topic / Description	Sem	Remarks	Blooms Level
1					Diodes and transistors	
2					Number theory	

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	COs	Teach.	Concept	Instr	Assessmen	Blooms'
		Hours		Method	t Method	Level
18ELN24.1	Describe the operations of diodes as regulators.	5	Regulator	Lecture	Assignment	L2
18ELN24.2	Explain the construction of rectifiers and filters	6	Rectifiers	Lecture	Assignment	L3

-		Total		54	-	-	-	-
18ELN24.10	Describe the operation of and mobile pl	e basic princip communication s nones.	le of ystem	2	Mobile Communica tion	Lecture	Slip test/ Assignment	L2
18ELN24.9	Apply differer conversions combinationa using FLip-Flo	nt number systen and construct s l and sequential c ops	ns for simple ircuits	6	Counters	Lecture	Slip test/ Assignment	L3
18ELN24.8	Examine tł oscillators	ne amplifiers	and	6	Oscillators	Lecture	Assignment	L3
18ELN24.7	Describe the o	operation of BJT		6	Bipolar Junction Transistors characteristi cs	Lecture	Assignment	L3
18ELN24.6	Extend the differentiator,	op-amp as a integrator, comp	adder, arator	5	Virtual Ground	Lecture	Assignment	L3
18ELN24.5	Implement operational ar	the working nplifiers	of	4	Op-amp Characteristi cs	Lecture	Assignment	L3
18ELN24.4	Understand a operating prin	and apply the go iciple of SCR	eneral	6	Silicon Controlled Rectifier characteristi cs	Lecture	Assignment	L3
18ELN24.3	Have kno characteristics	wledge of S	FET	8	Field Effect Transistors characteristi cs	Lecture	Assignment	L3
		Course Plan					Page:	4 / 22
	Doc Code:	SKIT.Ph5b1.F02					Date: (03-08-2019
SAMSTITUTE OF IS	SKIT Teaching Process						lons R	ev No.: 1.0

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	Maintain constant voltage level to regulate one or more AC or DC voltages in PCB's	CO1	L2
2	Processing the signal to remove unwanted frequency components and to enhance wanted ones in power supply instruments	CO2	L3
3	Used as input amplifiers in oscilloscopes, electronic voltmeters and other measuring and testing equipment using their high input impedance, in electronically controlled switches	CO3	L3
4	Used in devices where control of high power is demanded such as lamp dimming, power regulators and motor control and in home appliances including lighting, temperature control, fan speed regulation, heating and alarm activation	CO4	L3
5	Used as voltage follower, selective inversion circuit, current to voltage converter, active rectifier, integrator, filter and comparator in medical cardiographs	CO5	L3

SA INSTITUTE OF THE		SKIT	Teaching Process	lons Rev N	0.: 1.0
		Doc Code:	SKIT.Ph5b1.F02	Date: 03-08	8-2019
S* BAN	GALORE	Title:	Course Plan	Page: 5 / 2	2
Copyrigh	nt ©2017. cÅ	AS. All rights reserved			
6	Analog	computers a	analog to digital converters and wave-shaping circuits	C.O.6	13

6	Analog computers, analog to digital converters and wave-shaping circuits	CO6	L3
7	Used as automatically controlled switches, TTL circuits, amplifiers, current drivers	C07	L3
8	Applied in Tunable radio transmitters and receivers, signal generators	CO8	L3
9	Temporary data storage, data transfer. Data manipulation, counters	CO9	L3
10	Mobile phones	CO10	L2

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes				Pr	rogra	am (Dutc	com	es				
#	COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	Lev
		1	2	3	4	5	6	7	8	9	10	11	12	el
18ELN2	Describe the operations of diodes as	3	3	-	-	-	-	-	-	-	-	-	1	L2
4.1 18ELN2 4.2	Explain the construction of rectifiers and filters	3	3	-	-	-	-	-	-	-	-	-	-	L3
18ELN2 4.3	Have knowledge of FET characteristics	3	3	-	-	-	-	-	-	-	-	-	-	L3
18ELN2 4.4	Understand and apply the general operating principle of SCR	3	3	-	2	-	-	-	-	-	-	-	-	L3
18ELN2 4.5	Implement the working of operational amplifiers	3	-	-	-	-	-	-	-	-	-	-	-	L3
18ELN2 4.6	Extend the op-amp as adder, differentiator, integrator, comparator and voltage regulator	3	3	-	-	-	-	-	-	-	-	-	-	L3
18ELN2 4.7	Describe the operation of BJT	3	3	-	-	-	-	-	-	-	-	-	-	L3
18ELN2 4.8	Examine the amplifiers and oscillators	3	3	-	-	-	-	-	-	-	-	-	-	L3
18ELN2 4.9	Apply different number systems for conversions and construct simple combinational and sequential circuits using FLip-Flops	3	3	-	-	-	-	-	-	-	-	-	1	L3
18ELN2 4.10	Describe the basic principle of operation of communication system and mobile phones.	3	3	-	-	-	-	-	-	-	-	-	1	L2
Note: M	lention the mapping strength as 1, 2, or 3													

4. Mapping Justification

Мар	ping	Justification	Mapping Level
СО	PO	-	-
CO1	PO1	Knowledge of diode working,current flowing through diodes is	L2
		required.	
CO1	PO2	Problem analysis of diodes	L2
CO1	PO12	Life long learning of diode regulators	L2
CO2	PO1	Working of Half wave rectifiers FWR	L3
CO2	PO2	Numerical related to HWR and FWR	L3
CO3	PO1	Have Knowledge of FET Characteristics	L3

Statitute or to
* SANGALORE *

UTE OF TRO	SKIT	Teaching Process	lons Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
ALORE	Title:	Course Plan	Page: 6 / 22
00017 0			1

Copyright ©2017. cAA	S. All rights reserved	l.	
CO3	PO2	JFET,MOSFET	L3
CO4	PO1	Working of SCR principle is known to build complex circuits	L3
CO4	PO2	Analyzing of square law for SCR	L3
CO4	PO4	Analysis of Switching Characteristics	L3
CO5	PO1	Opamp block diagram, understanding the parameters of opamp	L3
CO6	PO1	Applying the knowledge of virtual ground for deriving gain for integrator and differentiator	L3
CO6	PO2	Analyzing comparator and voltage regulator circuit	L3
CO7	PO1	Working of BJT principle is known to build complex circuits	L3
CO7	PO2	Analyzing transistor as a switch and application in relays	L3
CO8	PO1	Working of Oscillators principle is known to build complex circuits	L3
CO8	PO2	Analyzing wein bridge oscillators	L3
CO9	PO1	Knowledge of number systems for solving complex problems	L3
CO9	PO2	Analyzing problem in SR flip flop	L3
CO9	PO12	Designing of a Memory elements in microprocessor	L3
CO10	PO1	Block diagram of a communication system	L2
CO10	PO2	Mobile phones analysis for proper communication	L2
CO10	PO12	Upgrading of communication systems	L2

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Diodes and Transistors				
2	Number theory				
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Octal Number system				
2					
3					
4					
5					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title			Teaching	No. of question in Exam					CO	Levels	
ule			Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE			
#									Asg			
1	Semiconductor	diodes	and	11	2	-	-	1	1	2	CO1,	L2,L3
	applications										CO2	
2	FET and SCR			14	2	-	-	1	1	2	CO3,	L3,L3
											CO4	

SKIT			Tead	ching F	Proces	S			lon	s Rev N	0.: 1.0		
		Doc Code:	SKIT.Ph5b1.F02	KIT.Ph5b1.F02				-					
5× 841	CALONE *	Title:	Course Plan	je Plan Pa						Pa	Page: 7 / 22		
Copyright ©2017. cAAS. All rights reserved.			-										
3	Operat	tional am	plifiers and	9	-	2	-	1	1	2	CO5,	L3,L3	
	applica	ations									CO6		
4	BJT	applications	s, Feedback	12	-	2	-	1	1	2	CO7,	L3,L3	
	amplifi	ers and oscilla	ators								C08		
5	Digital	Electronics Fi	undamentals	8	-	-	4	1	1	2	CO9,	L3,L2	

54 10 4 4 4 5 5 Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	CO1, CO2, CO3, CO4	L2, L3, L3, L3
CIA Exam – 2	30	CO5, CO6, CO7, C08	L3, L3, L3, L3
CIA Exam – 3	30	CO9, CO10	L3, L4
Assignment - 1	10	CO1, CO2, CO3, CO4	L2, L3, L3, L3
Assignment - 2	10	CO5, CO6, CO7, CO8	L3, L3, L3, L3
Assignment - 3	10	CO9, CO10	L3, L2
Seminar - 1		CO1, CO2, CO3, CO4	L2, L3, L3, L3
Seminar - 2		CO5, CO6,CO7,CO8	L3, L3, L3, L3
Seminar - 3		CO9, CO10	L3, L2
Other Activities – mini-		CO1 to CO10	L2, L3, L3, L3, L3, L3, L3, L3,
project			L3,L3, L2
Final CIA Marks	40	-	

Note : Blooms Level in last column shall match with A.2 above.

D1. TEACHING PLAN - 1

Module - 1

-

Title:	Semiconductor diodes and applications	Appr Time	11 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Describe the operations of diodes as regulators.	CO1	L2
2	Explain the construction of rectifiers and filters	CO2	L3
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	p-n junction diode, Equivalent circuit of diode,	CO1	L2
2	Zener Diode, Zener diode as a voltage regulator,	CO1	L2
3	Rectification-Half wave rectifier, Full wave rectifier,	CO2	L3
4	Bridge rectifier	CO2	L3
5	Capacitor filter circuit	CO2	L2
6	photodiode	CO2	L2
7	LED	CO2	L2
8	Photocoupler	CO2	L2
9	78XX series abd 7805 Fixed IC voltage regulator.	CO2	L2
10	Numericals on diodes	CO1	L3
11	Numericals on rectifiers	CO2	L3
С	Application Areas	СО	Level
1	Maintain constant voltage level to regulate one or more AC or DC voltages	CO1	L3

CO10

-

-

SAMSTITUTE OF THE	SKIT	Teaching Process
	Doc Code:	SKIT.Ph5b1.F02
SX 2 + 2	Title:	Course Plan

	in PCB's		
2	Processing the signal to remove unwanted frequency components and to	CO2	L3
d	Review Questions	-	_
1	Explain the theory of PN junction	CO1	L2
2	With neat sketch explain the formation of depletion region in unbiased pn junction	CO1	L2
3	Explain the different types of diode approximations	CO1	L2
4	Draw and explain VI characteristics of PN junction diode	CO1	L2
5	What is rectifier? Draw the circuit for HWR and explain its working? Derive	CO1	L2
	the expression for I_{DC} efficiency η PIV, RMS value of voltage		
6	Draw the circuit for FWR and explain its working? Derive the expression for	CO2	L2
	I _{DC} efficiency η PIV, RMS value of voltage		
7	Define ripple factor? Show that for HWR ripple factor is 1.21	CO2	L2
8	Explain the avalanche and zener break down with the help of VI characteristics?	CO2	L2
9	Draw the bridge rectifier circuit and explain its operation with waveforms. Show that ripple factor is 0.48?	CO2	L2
10	With relevant waveforms derive expression for I_{DC} , I_{RMS} and riipple factor of a FWR?	f CO2	L2
11	Explain how a zener diode can be used as voltage regulator? Also explain its performance?	CO1	L2
12	What is 78XX series? Explain the 7805 fixed IC voltage regulator?	CO2	L2
е	Experiences	-	_
1			
2			
3			
4			
5			

Module – 2

Title:	FET and SCR	Appr	14 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Have knowledge of FET characteristics	CO3	L3
2	Understand and apply the general operating principle of SCR	CO4	L3
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
12	JFET construction and operation	CO3	L2
13	JFET drain characteristics and parameters	CO3	L2
14	JFET transfer characteristics	CO3	L2
15	Square law expression I _D , Input resistance	CO3	L2
16	MOSFET: Depletion and enhancement type construction	CO3	L2
17	MOSFET: operation, characteristics and symbols	CO3	L2
18	CMOS	CO4	L2
19	Silicon Controlled Rectifier- two transistor model	CO4	L2
20	Switching action characteristics	CO4	L2
21	Phase control application	CO4	L2
22	Numericals on JFET	CO3	L3

SAMETITUTE OF THE	SKIT	Teaching Process	lons Rev	No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 03	-08-2019
SANGALORE *	Title:	Course Plan	Page: 9 /	/ 22
Copyright ©2017. cÅ	AS. All rights reserved.			

Copyright ©201	7. cAAS. All rights reserved.	opyright ©2017. cAAS. All rights reserved.					
23	Numericals on square law	CO3	L3				
24	Numericals on MOSFET	CO3	L3				
25	Numericals on SCR	CO4	L3				
С	Application Areas	СО	Level				
1	Used as input amplifiers in oscilloscopes, electronic voltmeters and other measuring and testing equipment using their high input impedance, in electronically controlled switches	CO3	L3				
2	Used in devices where control of high power is demanded such as lamp dimming, power regulators and motor control and in home appliances including lighting, temperature control, fan speed regulation, heating and alarm activation	CO4	L3				
d	Review Questions	-	-				
13	Explain the construction and operation of junction field effect transistor?	CO3	L3				
14	Draw and explain the JFET drain characteristics and parameters	CO3	L3				
15	Draw and explain JFET transfer characteristics	CO3	L3				
16	Derive Square law expression I_D , and also find the Input resistance?	CO3	L3				
17	Construct depletion and enhancement type MOSFET.	CO3	L3				
18	Explain the operation, characteristics and symbols of MOSFET	CO3	L3				
19	Write a short note on CMOS	CO3	L3				
20	Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics.	CO4	L3				
21	Explain the Switching action characteristics of SCR	CO4	L3				
22	Explain the Phase control application of SCR	CO4	L3				
е	Experiances						

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs (s Code: 18ELN24 Sem: I Marks: 30 Time:		Time:	75 minutes						
Cour	rse:	Basic Elect	Basic Electronics							
-	-	Note: Answ	/er any 1 que	estion from	each mod	ule		Marks	СО	Level
		MODULE 1								
1	а	Explain the diagram an	function of z	zener diode quations for	voltage req	gulator w rent	ith neat circuit	5	CO1	L2
	b	Explain the the followir i) Average ii) Rectifica	working of c ng DC Voltage. tion efficienc	enter tappe	ed FWR and	d derive a	n expression fo	r 5	CO2	L2
	С	Design and draw Zener regulator for the following specification Vo=5V Vin= 12 § 3 V Izmin=10 mA IL=20mA Pz=500mW. Calculate Rmin & Rmax				5	CO1	L3		
					OR					
2	а	Explain brie	efly capacito	r filter circuit	t.			5	CO2	L2
	b	Explain the coupler	functioning	of the follow	wing: I) pho	to diode i	i) LED iii) photc	9 5	CO2	L2
	С	Define 78x>	<pre>series and </pre>	explain the 7	7805 fixed l	C voltage	e regu/lator?	5	CO2	L2
				MO	DULE 2					
3	a	Draw the d	rain characte	eristics of n-	channel JF	ET and ex	kplain it?	5	CO3	L2
	b	Derive Squ	are law expr	ession I _D , an	d also find	the Input	resistance?	5	CO3	L3

ST HISTITUTE OF THE	SKIT	Teaching Process	lons F	Rev No.	: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date:	03-08-	2019
SANGALORE *	Title:	Course Plan	Page	: 10 / 2	2
Copyright ©2017. cÅ	AS. All rights reserved.				
				~ ~	

	С	Draw the two transistor equivalent circuit of SCR . Also plot VI	5	CO4	L2
		characteristics and explain various regions of operation			
4	a	Construct depletion and enhancement type MOSFET.	5	CO3	L3
	b	Explain the operation, characteristics and symbols of MOSFET	5	CO3	L3
	С	Draw the two transistor equivalent circuit of SCR . Also plot VI	5	CO4	L2
		characteristics and explain various regions of operation			

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

				Mo	del Assignmer	t Questions	5			
Crs C	ode:	18ELN24	4 Sem:	1	Marks:	10	Time:	90 - 120	minute	S
Cours	se:	Basic El	ectronics							
Note:	Each	student	to answer a	2-3 assignm	nents. Each ass	signment ca	arries equal ma	ark.		
SNo		USN		As	signment Des	cription		Marks	со	Level
1			Design an	d draw Zen	er regulator fo	r the follow	ring	5	CO1	L3
			specificati	on		1				
			Vo=5V Vin	= 12 🦉 3 V	I _{zmin} =10 mA	I∟=20mA	. P _Z =500mW.			
			Calculate Evolain th	K _{min &} K _{max}	f center tanna	d E\X/D and	l derive an	E	CO_{2}	12
2				n for the foll	lowina			5	002	
			i) Average	DC Voltag	e.					
	ii) Rectification efficiency									
3			What is vo	ltage regul	ator? Why it is	necessary	? Explain how	5	CO1	L2
			zener dioc	le can be u	sed as voltage	Regulator.				
4			Calculate	the output	DC voltage an	d efficiency	for the bridge	5	CO2	L3
			rectifier giv	ven load re	sistance= 1000	2 and diode	forward			
			resistance	= 100 and	AC Inout Voltag	ge = 300 sin	It Wt.		CO1	
5			Explain the	e operation		ge regulato	dorivo tho	5	CO1	
0				e working d for the foll	lowing	ectilier and	derive the	5	002	
			i) Average	DC Voltage	e.ii) Rectificatio	n efficiency				
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2010110190		, emercinely				
7			Draw the o	circuit of FV	VR and show t	nat ripple fa	actor is equal to	2 <u>5</u>	CO2	L3
			0.48 and e	fficiency is	81%	1.1				
8			With neat	circuit diag	ram and wave	form explai	n the working	5	CO2	L2
		of full wave bridge rectifier.								
9			Explain br	efly capaci	tor filter circuit			5	CO2	L2
10			With a nea	at circuit dia	agram and way	eforms, exp	plain the	5	CO2	L2
			Working of	ta half wav	e rectifier.	rou lit			<u> </u>	
11			write a no	ie on volta	ye regulator ci	rcuit.		5	CO1	L2
12			Explain the	- function o	of zener diode	voltage reg	ulator with ne	at 5	CO1	12
			circuit dia	aram and re	elevant equation	ons for zene	er current		001	
13			Prove that	ripple facto	or of HWR rect	ifier is 1.21		5	CO2	L3
14			Define line	e regulation	and load regu	Ilator		5	CO1	L2
15			Discuss th	e performa	nce of zener d	iode in tern	ns of source	5	CO1	L2
			and load e	effects						
16			Explain the	e functionir	ng of the follow	/ing: I) phote	o diode ii) LED	5	CO2	L2
L			iii) photo c	oupler			2		001	
17			Define 78x	x series an	a explain the 7	805 fixed IC	_ voltage	5	CO2	L2
18			Draw the	rain chara	staristics of n	hannol IEE	T and ovnlain	F	CO_{2}	12
1 10	1		ILLIAW LIE	a an chaid		JUCHUNCLUE		1 5		

SKIT	Teaching Process	lons Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
Title:	Course Plan	Page: 11 / 22

	it?			
19	Draw the two transistor equivalent circuit of SCR . Also plot VI characteristics and explain various regions of operation	5	CO4	L2
20	What are the applications of SCR. Explain	5	CO4	L2
21	Draw the circuit diagram to show how an SCR can be triggered by application of a pulse to the gate terminal. Sketch the circuit waveforms and explain its operation?	5	CO4	L2
22	Sketch typical SCR forward and reverse characteristics. Identify all regions of characteristics and all important current and voltage level?	5	CO4	L2
23	Draw the drain characteristics of p-channel JFET and explain it?	5	CO3	L2
24	Explain the construction and operation of junction field effect transistor?	5	CO3	L3
25	Draw and explain the JFET drain characteristics and parameters	5	CO3	L3
26	Draw and explain JFET transfer characteristics	5	CO3	L3
27	Derive Square law expression I _D , and also find the Input resistance?	5	CO3	L3
28	Construct depletion and enhancement type MOSFET.	5	CO3	L3
29	Explain the operation, characteristics and symbols of MOSFET	5	CO3	L3
30	Write a short note on CMOS	5	CO3	L3
31	Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics.	5	CO4	L3
32	Explain the Switching action characteristics of SCR	5	CO4	L3
33	Explain the Phase control application of SCR	5	CO4	L3
34	Design and draw Zener regulator for the following specification V ₀ =5V V _{in} = 12 § 3 V I _{Zmin} =10 mA I _L =20mA P _Z =500mW. Calculate R _{min &} R _{max}	5	CO1	L3
35	Explain the working of center tapped FWR and derive an expression for the following i) Average DC Voltage. ii) Rectification efficiency	5	CO2	L2
36	What is voltage regulator? Why it is necessary? Explain how zener diode can be used as voltage Regulator.	5	CO1	L2
37	Calculate the output DC voltage and efficiency for the bridge rectifier given load resistance= 100Ω and diode forward resistance = 10Ω and AC inout voltage = 300 sint wt.	5	CO2	L3
38	Explain the operation of Zener voltage regulator with load.	5	CO1	L2
39	Explain the working of Half Wave Rectifier and derive the expression for the following i) Average DC Voltage.ii) Rectification efficiency	5	CO2	L2
40	Draw the circuit of FWR and show that ripple factor is equal to 0.48 and efficiency is 81%	5	CO2	L3
41	With neat circuit diagram and waveform explain the working of full wave bridge rectifier.	5	CO2	L2
42	Explain briefly capacitor filter circuit.	5	CO2	L2
43	With a neat circuit diagram and waveforms, explain the working of a half wave rectifier.	5	CO2	L2
44	Write a note on voltage regulator circuit.	5	CO1	L2

PINSTITUTE OF
SANGALORE

SKIT	Teaching Process	lons Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
Title:	Course Plan	Page: 12 / 22

45	Explain the function of zener diode voltage regulator with neat circuit diagram and relevant equations for zener current	5	CO1	L2
46	Prove that ripple factor of HWR rectifier is 1.21	5	CO2	L3
47	Define line regulation and load regulator	5	CO1	L2
48	Discuss the performance of zener diode in terms of source and load effects	5	CO1	L2
49	Explain the functioning of the following: I) photo diode ii) LED iii) photo coupler	5	CO2	L2
50	Define 78xx series and explain the 7805 fixed IC voltage regu/lator?	5	CO2	L2
51	Draw the drain characteristics of n-channel JFET and explain it?	5	CO3	L2
52	Draw the two transistor equivalent circuit of SCR . Also plot VI characteristics and explain various regions of operation	5	CO4	L2
53	What are the applications of SCR. Explain	5	CO4	L2
54	Draw the circuit diagram to show how an SCR can be triggered by application of a pulse to the gate terminal. Sketch the circuit waveforms and explain its operation?	5	CO4	L2
55	Sketch typical SCR forward and reverse characteristics. Identify all regions of characteristics and all important current and voltage level?	5	CO4	L2
56	Draw the drain characteristics of p-channel JFET and explain it?	5	CO3	L2
57	Explain the construction and operation of junction field effect transistor?	5	CO3	L3
58	Draw and explain the JFET drain characteristics and parameters	5	CO3	L3
59	Draw and explain JFET transfer characteristics	5	CO3	L3
60	Derive Square law expression I _D , and also find the Input resistance?	5	CO3	L3
61	Construct depletion and enhancement type MOSFET.	5	CO3	L3
62	Explain the operation, characteristics and symbols of MOSFET	5	CO3	L3
63	Write a short note on CMOS	5	CO3	L3
64	Define Silicon Controlled Rectifier. Draw the two transiston equivalent model and explain with its VI characteristics.	5	CO4	L3
65	Explain the Switching action characteristics of SCR	5	CO4	L3
66	Explain the Phase control application of SCR	5	CO4	L3

D2. TEACHING PLAN - 2

Module – 3

Title:	Operational Amplifiers and Applications	Appr	9 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Implement the working of operational amplifiers	CO5	L2
2	Extend the op-amp as adder, differentiator, integrator, comparator and voltage follower	CO6	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level

STREETITUTE OF	SKIT	Teaching Process	lons Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
SA RANGALORE *	Title:	Course Plan	Page: 13 / 22

Copyright ©20	17. CAAS. All rights reserved.		
26	Introduction to op-amp, Op-amp input modes.	CO5	L2
27	Op-amp parameters-CMRR, Input offset voltage and current.	CO5	L2
28	Op-amp parameters- Input bias current, Input and output impedance , Slew rate	CO5	L2
29	Inverting amplifier	CO6	L3
30	Non-inverting amplifier	CO6	L3
31	Summer	CO6	L3
32	Voltage follower	CO6	L3
33	Integrator, differentiator.	CO6	L3
34	Comparator.	CO6	L3
с	Application Areas	СО	Level
1	Used as voltage follower, selective inversion circuit, current to voltage converter active rectifier integrator filter and comparator in medical	CO5	L3
	cardiographs		
2	Analog computers, analog to digital converters and wave-shaping circuits	CO6	L3
d	Review Questions	-	-
21	What is operational amplifier? Explain the equivalent circuite of op-amp.	CO5	L2
22	List the ideal and practical characteristics of op-amp.	CO5	L2
23	Explain inverting and Non-inverting mode of op-amp.	CO5	L2
24	Distinguish between open loop and closed loop configuration of op-amp.	CO5	L2
25	What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower.	CO6	L2
26	What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage?	CO6	L2
27	Explain op-amp based subtractor circuit and derive an expression for output voltage.	CO6	L2
28	Show how op-amp can be used as integrator and derive an expression for output voltage.	CO6	L2
29	Explain the op-amp based differentiator circuit and derive an expression for output voltage.	CO6	L2
30	Explain how op-amp can be used as comparator.	CO6	L2
е	Experiences		
1			
2			
3			
4			
5			

Module – 4

Title:	BJT Applications, Feedback Amplifiers and Oscillators	Appr	16 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Describe the operation of BJT	CO7	L3
2	Examine the amplifiers and oscillators	CO8	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
35	BJT as an amplifier	CO7	L2

STHISTITUTE OF THE	SKIT	Teaching Process	lons Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
St 2 STWGALORE *	Title:	Course Plan	Page: 14 / 22

Copyright ©2017	CAAS. All rights reserved.		
36	BJT as a switch	CO7	L2
37	Transistor switch circuit to switch ON/OFF an LED and a lamp in a power circuit using relay	CO7	L2
38	Feedback amplifiers-Principle, properties and advantages of negative feedback	CO8	L2
39	Types of feedback, Voltage series feedback and gain stability with feedback	CO8	L2
40	Oscillators- Barkhaunsen's criteria for oscillation	CO8	L2
41	RC phase shift oscillator	CO8	L2
42	Wein bridge oscillator	CO8	L2
43	IC 555 timer and astable oscillator using IC 555	CO8	L2
44	Numericals on transistors	CO7	L3
45	Numericals on amplifiers	CO8	L3
46	Numericals on oscillators	CO8	L3
С	Application Areas	CO	Level
1	Used as automatically controlled switches, TTL circuits, amplifiers, current drivers	CO8	L3
2	Applied in Tunable radio transmitters and receivers, signal generators	CO7	L3
d	Review Questions	-	-
1	Explain BJT as an amplifier?	CO7	L2
2	Explain BJT as a switch?	CO7	L2
3	Explain Transistor switch circuit to switch ON/OFF an LED	CO7	L2
4	Describe the lamp in a power circuit using relay?	CO7	L2
5	Explain the principle of feed back amplifeirs?	CO8	L2
6	List the types of feedback. Explain the properties and advantages of negative feedback.	CO8	L2
7	Explain the Voltage series feedback	CO8	L2
8	Describe the gain stability with feedback	CO8	L2
9	Explain the Barkhaunsen's criteria for oscillation	CO8	L2
10	Explain the working of RC phase shift oscillator	CO8	L2
11	Explain the working of Wein bridge oscillator	CO8	L2
12	Draw the pin diagram of the IC 555 timer and explain astable oscillator	CO8	L2
	using IC 555		
е	Experiences	-	-
1			
2			
3			
4			
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Code:	18ELN24	Sem:	1	Marks:	30	Time: 7	5 minute	S	
Cou	rse:	Basic Elect	ronics							
-	-	Note: Answ	/er any 2 qu	estions, eac	ch carry ec	lual mark	S.	Marks	CO	Level
				MO	DULE-3					
1	a	What is ope	erational arr	plifier? Expla	ain the equ	uivalent c	ircuit of op-amp.	5	CO5	L2
	b	Show how (op-amp car	n be used as	integrator	and deriv	/e an expression fo	or 5	CO6	L2
		output volta	age.							
	С	Calculate t	he output	voltage of a	three inp	ut summ	ing amplifier give	n 5	CO6	L3

SA METITUTE OF IC	
A RANGALORE +	

SKIT	Teaching Process	lons Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
Title:	Course Plan	Page: 15 / 22

L2 L2
L2 L2
L2 L2
L2
L2
L3
L2
L2
L2
L2
L2
L2

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

				Mo	del Assignmen	t Questi	ons				
Crs C	ode:	18ELN2	4 Sem:	1	Marks:	10	Time:	90 -	- 120 r	minutes	5
Cours	se:	Basic El	ectronics								
Note:	Each	student	to answer 2-3	assignn	nents. Each ass	ignmen	t carries equal ma	ark.			
SNo		USN		As	signment Des	cription		M	arks	СО	Level
1			What is opera op-amp.	ational a	amplifier? Expla	ain the e	equivalent circuit	of	5	CO5	L2
2	2 List the ideal and practical characteristics of op-amp.							5	CO5	L2	
3			Explain invert	ting and	Non-inverting	mode o	f op-amp.		5	CO5	L2
4			Distinguish b of op-amp.	etween	open loop and	l closed	loop configuration	on	5	CO5	L2
5			What is volta voltage follov	age follo wer.	ower w.r.t op-a	mp? Ex	plain the circuit	of	5	CO6	L2
6			What is op-a summer circu	amp sur uit with c	nmer circuit? E derivation to ou	Explain 1 Itput vol	the op-amp base tage?	ed	5	CO6	L2
7	7 Explain op-amp based subtractor circuit and derive an 5 CO6 L2 expression for output voltage.						L2				
8		Show how op-amp can be used as integrator and derive an 5 CO6 L expression for output voltage.						L2			
9	Explain the op-amp based differentiator circuit and derive an expression for output voltage.					an	5	CO6	L2		
10			Explain how	op-amp	can be used a	s comp	arator.		5	CO6	L2
11	1 Design an adder circuit using op amp to obtain an output 5 CO6 L voltage of $V_0=2[0.1V_1+0.5V_2+2V_3]$ where V_1 , V_2 and V_3 are input voltages.						L3				
12			What is an op amp?	o-amp. E	Explain the idea	al charad	cteristics of the o	p-	5	CO6	L2
13			Define the fo ii) CMRR iii) (llowing Off set vo	in case of a pra oltages iv) PSF	actical o R	p-amp i) Slew ra	te	5	CO6	L2
14	14 Calculate the output voltage of a three input summing 5 COC amplifier given $R_1=200k\Omega$, $R_2=250K\Omega$, $R_3=500k\Omega$ and $R_f=1M\Omega$. $V_1=-2v$, $V_2=2v$, $V_3=1v$					CO6	L3				
15			Write any fou	ır advanl	tages of negati	ve feedl	back amplifiers?		5	CO7	L2
16			What is opera op-amp.	ational a	amplifier? Expla	ain the e	equivalent circuit	of	5	CO5	L2

INSTITUTE OF
Soon B
C C C
WGALO

SKIT	Teaching Process	lons Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
Title:	Course Plan	Page: 16 / 22

Copyright ©2017	CAAS All rights reserved.			
17	List the ideal and practical characteristics of op-amp.	5	CO5	L2
, 18	Explain inverting and Non-inverting mode of op-amp.	5	CO5	L2
19	Distinguish between open loop and closed loop configuration	5	CO5	L2
20	What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower.	5	CO6	L2
21	What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage?	5	CO6	L2
22	Explain op-amp based subtractor circuit and derive an expression for output voltage.	5	CO6	L2
23	Show how op-amp can be used as integrator and derive an expression for output voltage.	5	CO6	L2
24	Explain the op-amp based differentiator circuit and derive an expression for output voltage.	5	CO6	L2
25	Explain how op-amp can be used as comparator.	5	CO6	L2
26	Design an adder circuit using op amp to obtain an output voltage of V_0 =2[0.1 V_1 +0.5 V_2 +2 V_3] whwre V_1 , V_2 and V_3 are input voltages.	5	CO6	L3
27	What is an op-amp. Explain the ideal characteristics of the op- amp?	5	CO6	L2
28	Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) Off set voltages iv) PSRR	5	CO6	L2
29	Calculate the output voltage of a three input summing amplifier given R_1 =200k Ω , R_2 = 250K Ω , R_3 = 500k Ω and R_f = 1M Ω . V_1 = -2v, V_2 =2 v, V_3 =1v	5	CO6	L3
30	Write any four advantages of negative feedback amplifiers?	5	CO7	L2
31	Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) Off set voltages iv) PSRR	5	CO6	L2
32	Explain BJT as an amplifier?	5	CO7	L2
33	Explain BJT as a switch?	5	CO7	L2
34	Explain Transistor switch circuit to switch ON/OFF an LED	5	CO7	L2
35	Describe the lamp in a power circuit using relay?	5	CO7	L2
36	Explain the principle of feed back amplifeirs?	5	CO8	L2
37	List the types of feedback. Explain the properties and advantages of negative feedback.	5	CO8	L2
38	Explain the Voltage series feedback amplifier?	5	CO8	L2
39	Describe the gain stability with feedback?	5	CO8	L2
40	Explain the Barkhaunsen's criteria for oscillation	5	CO8	L2
41	Explain the working of RC phase shift oscillator?	5	CO8	L2
42	Explain the working of Wein bridge oscillator	5	CO8	L2
43	Draw the pin diagram of the IC 555 timer and explain astable oscillator using IC 555	5	CO8	L2
44	Explain BJT as an amplifier?	5	C07	L2
45	Explain BJT as a switch?	5	C07	L2
46	Explain Transistor switch circuit to switch ON/OFF an LED	5	C07	L2
47	Describe the lamp in a power circuit using relay?	5	C07	L2
48	Explain the principle of feed back amplifeirs?	5	CO8	L2
49	List the types of feedback. Explain the properties and advantages of negative feedback.	5	CO8	L2
50	Explain the Voltage series feedback amplifier?	5	CO8	L2
51	Describe the gain stability with feedback?	5	CO8	L2
52	Explain the Barkhaunsen's criteria for oscillation	5	CO8	L2
53	Explain the working of RC phase shift oscillator?	5	CO8	L2
54	Explain the working of Wein bridge oscillator	5	CO8	L2

STHETITUTE OF THE	SKIT	Teaching Process	lons Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
A PANGALORE T	Title:	Course Plan	Page: 17 / 22
Convright @2017 cA	AS All rights recorved		

55	Draw the pin diagram of the IC 555 timer and explain astable oscillator using IC 555	5	CO8	L2
56	Design an adder circuit using op amp to obtain an output voltage of $V_0=2[0.1V_1+0.5V_2+2V_3]$ whwre V_1 , V_2 and V_3 are input voltages.	5	CO6	L3
57	What is an op-amp. Explain the ideal characteristics of the op- amp?	5	CO6	L2
58	Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) Off set voltages iv) PSRR	5	CO6	L2
59	Calculate the output voltage of a three input summing amplifier given R_1 =200k Ω , R_2 = 250K Ω , R_3 = 500k Ω and R_f = 1M Ω . V_1 = -2v, V_2 =2 v, V_3 =1v	5	CO6	L3
60	Explain the principle of feed back amplifeirs?	5	CO8	L2
61	List the types of feedback. Explain the properties and advantages of negative feedback.	5	CO8	L2
62	Explain the Voltage series feedback amplifier?	5	CO8	L2
63	Describe the gain stability with feedback?	5	CO8	L2
64	Explain the Barkhaunsen's criteria for oscillation	5	CO8	L2
65	Explain the working of RC phase shift oscillator?	5	CO8	L2
66	Explain the working of Wein bridge oscillator	5	CO8	L2

D3. TEACHING PLAN - 3

Module – 5

Title:	Digital Electronics Fundamentals	Appr	8 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Apply different number systems for conversions and construct simple combinational and sequential circuits using FLip-Flops	CO9	L3
2	Describe the basic principle of operation of communication system and mobile phones.	CO10	L2
	Course Schodule		
Class No	Module Content Covered	00	l evel
47	Difference between analog and digital signals	C09	L3
48	Number systems: Binary and hexadecimal	CO9	L3
49	Conversion: Decimal to binary and hexadecimal to decimal and vice-versa	COg	L3
50	Boolean algebra, Basic and universal gates	CO9	L3
51	Half and full adder	CO9	L3
52	Multiplexer, decoder, SR and JK flip flops	CO9	L3
53	Shift register, 3 bit Ripple counter.	CO9	L3
54	Basic communication system, Principle of operations of Mobile phone	CO10	L2
c	Application Areas	СО	Level
1	Temporary data storage, data transfer. Data manipulation, counters	COg	L3
2	Mobile phones	CO10	L2
d	Review Questions	-	-
1	Differentiate between analog and digital signals	CO9	L3
2	Explain the Binary and hexadecimal forms of numbers	CO9	L3
3	Explain conversion process of Decimal to binary and hexadecimal to decimal and vice-versa	CO9	L3
4	State and prove De-Morgan's Theorem	CO9	L3

STANSTITUTE OR ING	SKIT	Teaching Process	lons Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
SANGALOBE +	Title:	Course Plan	Page: 18 / 22

Copyright ©201	7. cAAS. All rights reserved.					
5	Explain the basic laws in boolean algebra	CO9	L3			
6	With truth table explain Basic and universal gates CO9					
7	Realize Half and full adder sing basic and universal gates	CO9	L3			
8	Explain the working of the following: I) Multiplexer ii) decoder iii) SR flip flop iv) JK flip flop	CO9	L3			
9	Explain the following: I) Shift register ii) 3 bit Ripple counter.	CO9	L3			
10	With a neat block diagram explain the communication system?	CO10	L2			
11	Explain the Principle of operations of Mobile phone	CO10	L2			
е	Experiences	-	-			
1						
2						
3						
4						
5						

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Code		CS501PC	Sem:	1	Marks:	30	Time: 7	5 minute	S	
Cour	rse:	Design and	Design and Analysis of Algorithms							
-	-	Note: Answ	/er any 2 qu	estions, eac	h carry equ	al marks.		Marks	СО	Level
				MO	DULE-5					
1	а	Solve the fo	ollowing (i) (,	ABC) ₁₆ =(?) ₂ (ii) (985.85) ₁₀ =	(?) ₈		5	CO9	L3
	b	Reduce the following Boolean expression and implement using bas gates. F=ABC+ABC+ABC+ABC							CO9	L3
	С	Explain the working of the following: I) Multiplexer ii) decoder iii) SR fl flop iv) JK flip flop							CO9	L3
					OR					
2	а	Realize Hal	f and full ad	der sing bas	ic and unive	rsal gates		5	CO9	L3
	b	Design a lo	ogic circuit	using basic	gates with	three input	s A, B, C an	d 5	CO9	L3
		output Y th	at goes low	only when A	is high and	B and C are	different			
	С	Explain the	Principle of	operations	of Mobile ph	one		5	CO10	L2
				MO	DULE-5					
3	а	Explain the	following: I)	Shift registe	er ii) 3 bit Rip	ple counter.		5	CO9	L3
	b	Simplify ABC+A B C+AB C + A BC						5	CO9	L3
	С	Perform the following conversions: I) (ABCD.EF) _H =(?) ₈ ii) (988.86) ₁₀ =(?) ₂						5	CO9	L3
					OR					
4	а	Write the decimal equivalent of (10AB) ₁₆					5	CO9	L3	
	b	Convert (AE	BCD) ₁₆ =(?) ₂ =(?	P) ₈ =(?) ₁₀				5	CO9	L3
	С	With a neat	em?	5	CO10	L2				

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

				Model /	Assignment	Questions				
Crs C	rs Code: 15ELN14 Sem: I Marks: 10 Time:					Time: g	90 – 120 minutes			
Cours	se:	Basic Ele	Electronics							
Note:	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.									
SNo	USN Assignment Description					Marks	СО	Level		
1			Solve the foll	owing (i) (10	24.625) ₁₀ = (?	?) ₂ (ii) (2651.5;	3) ₈ =(?) ₂	5	CO9	L3
2			Solve the foll	owing (i) (AE	3C) ₁₆ =(?) ₂ (ii)	(985.85) ₁₀ =(?	') ₈	5	CO9	L3
					10 2	10	0			
3			Reduce the	following I	Boolean exp	oression an	d implemen	t 5	CO9	L3

A INSTITUTE OF
ANGALOR

SKIT	Teaching Process	lons Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
Title:	Course Plan	Page: 19 / 22

Copyright	t ©2017, cAAS. All rights reserved.			
	using basic gates. F=ABC+ABC+ABC			
4	Differentiate between analog and digital signals	5	CO9	L3
5	Explain the Binary and hexadecimal forms of numbers	5	COg	L3
6	Explain conversion process of Decimal to binary and	5	COg	L3
	hexadecimal to decimal and vice-versa	U		0
7	State and prove De-Morgan's Theorem	5	COg	L3
, 8	Explain the basic laws in boolean algebra	5	COg	L3
9	With truth table explain Basic and universal gates	5	COg	
10	Realize Half and full adder sing basic and universal gates	5	COg	 3
11	Explain the working of the following: I) Multiplexer ii) decoder	5	COq	 3
	iii) SR flip flop iv) JK flip flop			-5
12	Explain the following: I) Shift register ii) 3 bit Ripple counter.	5	CO9	L3
13	With a neat block diagram explain the communication system?	5	CO10	L2
14	Explain the Principle of operations of Mobile phone	5	CO10	L2
15	Draw the logic circuit for full adder and write the truth table with expression using NOR gate.	5	CO9	L3
16	Implement full adder using two half adders and one OR gate. Write the equations for sum and carry.	5	CO9	L3
17	Simplify P=xy+xyz+xyz+xyz using 2 input NAND gates	5	CO9	L3
18	Perform the following: I) (101010111100)2=(?)8=(?)16	5	CO9	L3
	ii) (1100) ₂ +(1111) ₂ and (123) ₈ +(126) ₈			
19	Write the truth table of an OR function and realize an OR gate using diodes.	5	CO9	L3
20	Realize a half adder using AND, OR and inverter logic gates. Write the truth table.	5	CO9	L3
21	Draw the full adder circuit with the truth table.		CO9	L3
22	Explain the logic circuit of XOR gate with truth table.	5	CO9	L3
23	Realize the following expression using the NOR gate Y=A(B+C)	5	CO9	L3
24	Subtract $(57)_{10}$ from $(43)_{10}$ using 2's complement form	5	CO9	L3
25	Realize two input EX-OR gate using only NAND gates.	5	COg	L3
26	Show that NAND gate is a universal gate (Realize basic gates)	5	CO9	L3
27	. Realize Y=AB+AB using minimum number of NAND gates.	5	CO9	L3
28	Simplify ABC+A B-C+AB-C + A-BC	5	CO9	L3
29	Perform the following conversions: I) (ABCD.EF) _H =(?) ₈ ii) (988.86) ₁₀ =(?) ₂	5	CO9	L3
30	Write the decimal equivalent of (10AB) ₁₆	5	CO9	L3
31	Convert (ABCD) ₁₆ =(?) ₂ =(?) ₈ =(?) ₁₀	5	CO9	L3
32	Subtract: $(28)_{10}$ – $(19)_{10}$ using both 1's compliment and 2's compliment.	5	CO9	L3
33	Convert (FA876) ₁₆ = (?) ₂	5	CO9	L3
34	With the help of a diode switching circuit and truth table explain the operation of an AND gate and OR gate	5	CO9	L3
35	Convert (101101001.101011) ₂ =(?) ₁₆	5	COg	L٦
36	What are universal gates? Realize AND and OR gates using universal gates.	5	CO9	L3
37	Add (7AB.67) ₁₆ with (16C.71) ₁₆	5	COa	L٦
38	Convert (1101101) ₂ =(?) ₁₀ and (96) ₁₀ =(?) ₂ .	5	COq	 3
39	Subtract $(19)_{10}$ from $(15)_{10}$ using 1's and 2's compliment	5	CO9	<u>_</u>
				<u> </u>

INSTITUTE OF
84NGALORE *

SKIT	Teaching Process	lons Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
Title:	Course Plan	Page: 20 / 22

Copyrigh	il ©2017. CAAS. All rights reserved.			
	methods			
40	Design a logic circuit using basic gates with three inputs A,B,C	5	CO9	L3
	and output Y that goes low only when A is high and B and C			
	are different			
41	Convert (1AD.E0) ₁₆ =(?) ₁₀ =(?) ₈	5	CO9	L3
42	Convert (356.15) ₈ =(?) ₂ =(?) ₁₀	5	CO9	L3
43	Draw the full adder circuit with the truth table.	5	CO9	L3
44	Explain the logic circuit of XOR gate with truth table.	5	CO9	L3
45	Realize the following expression using the NOR gate Y=A(B+C)	5	CO9	L3
46	Subtract (57)10 from (43)10 using 2's complement form	5	CO9	L3
47	Realize two input EX-OR gate using only NAND gates.	5	CO9	L3
48	Show that NAND gate is a universal gate (Realize basic gates)	5	CO9	L3
49	Realize Y=AB+AB using minimum number of NAND gates.	5	CO9	L3
50	Simplify ABC+A B-C+AB-C + A-BC	5	CO9	L3
51	Perform the following conversions: I) (ABCD.EF) _H =(?) ₈ ii)	5	CO9	L3
	$(988.80)_{10} = (?)_2$	_	000	
52	Write the decimal equivalent of (10AB) ₁₆	5	009	3
53	Convert $(ABCD)_{16} = (?)_2 = (?)_{10}$	5	009	3
54	compliment.	5	009	L3
55	Convert (FA876) ₁₆ = (?) ₂	5	CO9	L3
56	With the help of a diode switching circuit and truth table	5	CO9	L3
	explain the operation of an AND gate and OR gate			
57	Convert (10110101001.101011) ₂ =(?) ₁₆	5	CO9	L3
58	What are universal gates? Realize AND and OR gates using universal gates.	5	CO9	L3
59	Add (7AB.67) ₁₆ with (16C.71) ₁₆	5	CO9	L3
60	Convert (1101101) ₂ =(?) ₁₀ and (96) ₁₀ =(?) ₂ .	5	CO9	L3
61	Subtract $(19)_{10}$ from $(15)_{10}$ using 1's and 2's compliment methods	5	CO9	L3
62	Design a logic circuit using basic gates with three inputs A. B.	5	COo	13
	C and output Y that goes low only when A is high and B and C	5	009	-5
	are different			
63	Convert $(1AD.E0)_{16}=(?)_{16}=(?)_{8}$	5	COg	L3
64	Convert $(356.15)_8 = (?)_2 = (?)_{10}$	5	COq	
65	With the help of a diode switching circuit and truth table	5	COo	 3
	explain the operation of an AND gate and OR gate	5		
66	Convert (10110101001.101011) ₂ =(?) ₁₆	5	CO9	L3

F. EXAM PREPARATION

1. University Model Question Paper

Cour	rse:	Basic Electronics Month				Month ,	∕ Year	May /2	2018	
Crs (Code:	18ELN24	Sem:	1	Marks:	100	Time:		180 mi	nutes
-	Note	Answer all FIV	wer all FIVE full questions. All questions carry equal marks.						СО	Level
1	а	NEW SCHEME	-							
	b									
	С									
	d									
				OR						
-	а									
	b									
	С									
	d									

ST HISTITUTE OF THE	SKIT	Teaching Process	lons Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
SANGALORE \$	Title:	Course Plan	Page: 21 / 22

2	а				
	b				
	С				
	d				
		OR			
-	а				
	b				
	С				
	d				
3	a				
	b				
	С				
	d				
		OR			
	а				
	b				
	С				
	d				
4	а				
	b				
	С				
	d				
		OR			
	a				
	b				
	С				-
	d			<u> </u>	<u> </u>
				<u> </u>	
5	a				
	b				
	С				
	d				<u> </u>
		OR			<u> </u>
	a				<u> </u>
	b				
	C				
	d				

2. SEE Important Questions

Course:		Basic Electron	Basic Electronics Month .					' Year	May /2	2018
Crs (Code:	18ELN24	Sem:	1	Marks:	100	Time:		180 mi	nutes
	Note	Answer all FIV	É full que	stions. All qu	estions carry equ	ial marks.		-	-	
Mo	Qno.	Important Question				Mark	СО	Year		
dul							S			
е										
1	1	What is rectifier? Draw the circuit for HWR and explain its working? Derive				king? Derive	5	C02	2011	
		the expression for I_{DC} efficiency η PIV, RMS value of voltage								
	2	Draw the circuit for FWR and explain its workintg? Derive the expressior				5	C02	2013		
		for I_{DC} efficiency η PIV, RMS value of voltage								
	3	With neat cire	cuit diagi	ram explain	working princir	oles of b	ridge wave	5	CO2	2011

A INSTITUTE OF
SANGALORE

SKIT	Teaching Process	lons Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 03-08-2019
Title:	Course Plan	Page: 22 / 22

	-	rectifier?			
	4	Explain the performance of zener diode in terms of souce and load effects.	5	C01	2011
	5	Explain photo diode with neat diagram?	5	C02	2013
2	1	Draw the drain characteristics of a n-channel JFET and explain it.	5	C03	2013
	2	Explain the construction and operation of MOSFET	5	C03	2011
	3	Sketch and explain the VI characteristics if SCR?	5	C04	2011
	4	Draw two transister equivalent model of SCR.	5	C04	2010
	5	Explain phase control application using SCR	5	C04	2012
3	1	Explain the ideal opamp characteristics.	5	C05	2011
	2	Explain the following i)CMRR II)Slew rate iii) PSRR	5	C05	2013
	3	With a help of circuit diagram, derive the output voltage for integrator	5	C06	2011
	4	Show how an opamp can be used as differentiator. derive expression for	5	C06	2011
		output voltage			
	5	Draw the following circuit using opamp: i)adder ii) voltage follower.	5	C06	2015
4	1	Explain how BJT can be used as an amplifier.	5	C07	2013
	2	Give four advantages of negative feedback in amplifier.	5	C07	2010
	3	With circuit explain the working of RC phase shift oscillator.	5	C08	2010
	4	Explain barkhausen criterian for oscillation.	5	C08	2011
	5	Explain with a neat diagram weinbridge oscillator.	5	C08	2015
5	1	What are universal gates? Realize AND and OR gates using universal	5	C09	2011
		gates.			
	2	Subtract (57)10 from (43)10 using 2's complement form	5	C09	2013
	3	Realize two input EX-OR gate using only NAND gates.	5	C09	2015
	4	Explain with a neat diagram shift register	5	C09	2012
	5	With a neat diagram explain communication systems.	5	C010	2012